UCID-20478

Installation of the PADL-2
Solid Modeler on the CRAY-1

J. R. Kalibjian

August 1985

This is an informal report intended primarily for internal or limited external distribution. The
opinions and condusions stated are those of the author and may or may not be those of the
Laboratory.

Waork performed under the auspices of the U.S. Department of Energy by the Lawrence
Livermore Laboratory under Contract W-7405-Eng-48.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor the University of California nor any of their employees, makes any
warranty, express or implied. or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus. product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial products, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or the University of California. The views and opinions of authers
expressed herein do not necessarily state or reflect those of the United States Government or the University of
California, and shall not be used for advertising or product endorsement purposes.

Printed in the Uniled Stales of America
Available from
Natinnal Technical Enformation Sorvice
U.S. Department of Commerc
5285 Port Roval Roead
Springfield VA 22161

Price: Printed Copy $ Mitrofiche $4.50
Domestic Domestic
Page Range Price Page Range Price

001-025 $ 7.00 326-350 $ 26.50
026-050 8.50 351-375 28.00
051-075 10.00 376-400 29.50
076-100 11.50 401-426 31.00
101-125 13.00 427-450 32.50
126-150 14.50 451-475 34.00
151-175 16.00 476-500 35.50
176-200 17.50 501-525 37.00
201-225 19.00 526-550 38.50
226-250 20.50 551-575 40.00
251-275 22.00 576-600 41.50
276-300 23.50 601-up'
301-325 25.00

'Add 1.50 for each additional 25 page increment, or portion
thereof from 601 pages up.

Installation of the PADL-2
Solid Modeler on the CRAY-1

Abstract

We describe in detail the method used to install the PADL-2 solid modeler on the
CRAY-1 at Lawrence Livermore National Laboratory (LLNL), and document the solu-
tions required to successfully implement two versions of this VAX native source code.
Inadequate PADL-2 documentation and PADL-2’s dependence on many non-standard
FORTRAN features delayed bringing up Version 1.0. Additional problems resulted from
little known quirks in LTSS system routines such as 8-bit character data losses (in CIVIC)
on byte data transfers to subroutines and binary incompatibility between CIVIC and CFT
logical variables and syntax conflicts with PRECOMP.

We installed the second version, PADL-2/1.2, with much less difficulty because the
code was cleaner and most implementation problems had already been identified. Yet,
other problems were discovered such as CFT compiler differences from standard
FORTRAN-77 and lack of LTSS support libraries for list directed and file 1/0.

Finally, modifications to the original Lexidata and Tektronix graphic interface
routines let us generate (1) color high-resolution, shaded pictures on the laboratory’s
Dicomed film recorder, (2) low-resolution black-and-white dithered pictures of shaded
objects displayable on TMDS and RJET, and (3) wireframe pictures of parts also
displayable on both TMDS and RJET.

Introduction

Solid modelers' produce a complete math-
ematical description of a user defined object. The
primary application goal is to automate the analy-
sis and manufacture of mechanical parts. Solid
modeling research” began at LLNL approximately
four years ago. The basic goal of the project was
to advance algorithm research in two areas; spe-
cifically, in extending the geometric coverage and
graphics capabilities of solid modeling systems.

Because we desired to implement the algo-
rithms developed in our research on actual solid
modeling systems, we wanted to acquire modelers
that could be installed on the Livermore Time
Sharing Computer System (LTSS). When the re-

search effort began, there were only two solid
modeler source codes available to research institu-
tions at a reasonable cost. They were TIPS-1,% a
CSG-like (constructive solid geometry) modeler
produced at Hokaido University that was avail-
able through CAM-1, and PADL-2,* a hybrid mod-
eler produced by the Production Automation
Project at the University of Rochester. We chose
to implement both TIPS-1 and PADL-2. TIPS-1
was brought up in 1982 and has since undergone
many changes. PADL-2 Version 1.0 was brought
up in July 1984; Version 1.2 was working by
February 1985.

Strategy for Installation

Versions 1.0 and 1.2 of PADL-2 were native
to the VAX computing environment. Installing the
code on a CRAY-1 revealed many little known
facets of the LTSS FORTRAN environment and
helped identify important differences between
VAX,” CRAY,® and Livermore’ FORTRAN. A

three-step process was employed to get PADL-
2/1.0 working on the CRAY-1. Step one encom-
passed moving the PADL-2 source code to the
CRAY and modifying it for use in the LTSS envi-
ronment. Step two was static debugging. In this
phase. device dependencies were first eliminated;

then all the PADL-2 sources were pre-processed
from the PADL-2 source language (FLECS) to
FORTRAN and then compiled. Finally, step three
was dynamic (run-time) debugging on the PADL-2
system. This three-step process proved to be
very effective, and it was also used to bring up
Version 1.2

Moving PADL-2 Sources to the CRAY

Moving the PADL-2 sources to the CRAY
was time consuming since PADL-2 comprises
about 600 subroutines, totalling approximately
50,000 lines of code. The University of Rochester
delivered the source files on a tape written with
their VAX in a 24 x 80 blocked ASCII format. It
was read onto the CRAY using the OCTOPUS
utility RWFILES.® Several intermediate format
modifications were then made to convert the files
to CRAY format files. After the CRAY formatting
was complete, the files were reorganized and
saved. On the VAX, logically related files were
grouped together via a subdirectory structure. On
the CRAY, this was done by placing related
source files in the same “LIB"? library and saving
the library under one root directory.'®

Modifying Sources for the
LTSS Environment

Before the PADL-2 routines could be com-
piled on the CRAY, we had to modify them for
use in their new programming environment. One
of the first problems we faced was an illegal char-
acter introduced into the PADL-2 source files by
Rochester's use of the TAB function on their
terminals.

Illegal Character Introduced by Tab Function

At Rochester, programmers used the TAB
function key to position their cursor at column
seven in preparation for typing a line of FOR-
TRAN code. Unfortunately, when a file contain-
ing such a code is read from tape with RWFILES
or TAPECOPY! as a 24 x 80 blocked ASCII file,
the TAB maps as an illegal ASCII character that is
replaced with a question mark (ASCII 63). Thus, it
was necessary to replace question marks in col-
umn one with at least seven spaces in all files that
made use of the TAB function.

Include Directives

Another problem dealt with VAX INCLUDE
directives in the PADL-2 source files. Most

PADL-2 routines made use of common block files.
For example, if a VAX FORTRAN routine A.FOR
uses common block file B.COM, then A.FOR must
declare INCLUDE B.COM. To do this in LTSS,
B.COM must first be made a cliche file'; then
A .FOR must declare USE B.COM. All files were
checked and corrected for this problem with a
TRIX/COSMOS controllee, '3

Eight-Bit Character Data

The first two problems encountered with
PADL-2 files were system dependent, but the last
major problem in the modification for LTSS was a
FORTRAN implementation issue—the handling
of 8-bit character data. To allow for maximum
transportability, Rochester programmers placed
character data in 8-bit LOGICAL*1 arrays. Fur-
ther, character data to be archived in the PADL-2
data base was placed in a LOGICAL*1 array
equivalenced to the PADL-2 main storage area.
This scheme was quite efficient and appropriate in
the VAX environment; yet, it was unworkable on
the CRAY because LOGICAL*1 variables are 64
bits long, and because variables of different type
(other than real and integer) could not be
equivalenced using the CRAY CFT compiler.

A method for implementing character han-
dling using LRLTRAN, which allows mixed mode
equivalencing, had to be devised. Before this
could be done, all routines that used LOGICAL*1
variables and the equivalencing technique had to
be located. This was difficult because Rochester
did not clearly indicate which routines used the
LOGICAL*1 and the equivalencing facilities.
Eventually a TRIX/COSMOS controllee found all
“offending” routines, and the LOGICAL*1
variables were simply declared as BYTE
< varname>>(8) variables. This declaration did not
eliminate all the difficulties; we discovered that in
LRLTRAN, 8-bit arrays passed between subrou-
tines have their data right shifted, and hence lost.
To resolve this, all 8-bit character arrays passed
between subroutines were equivalenced to 64-bit
integer arrays. The 64-bit integer arrays were then
passed as parameters between the subroutines.

Graphics Interfaces

In addition to these VAX FORTRAN and sys-
tem dependencies in the PADL-2 software, there
were still other dependencies in the code related
to graphics devices. Fortunately, these dependen-
cies were well documented and easily fixed.

At Rochester, a Lexidata 3400 raster device
displayed high-resolution shaded images and a
Tektronix terminal was used for most line

Figure 1. Color-shaded Dicomed picture of a
part generated by PADL-2; CRAY time = 14.6 s.

Figure 2. Color-shaded Dicomed picture of a
part generated by PADL-2; CRAY time = 16.0s.

Figure 3.

Wireframe image of PADL-2 part in Fig 1(a)showing hidden lines, CRAY time = 0.6 s and

(b) with hidden lines removed, CRAY time = 32.7 s,

drawings. We modified the graphics interface
routines for the Lexidata to produce Dicomed
film-recorder (red, green, and blue) absolute files
and a dither file. With the Dicomed files, color
shaded pictures of objects could be obtained in
several formats: 4- x 5-in. polaroids, slides
(Figs. 1 and 2), and 8- 1/2- x 11-in. glossies. The
modifications made to the Tektronix interface
routines allow us to displav wireframe images on
TMDS or RJET as shown in Figs. 3(a), 3(b), 4(a),
and 4(b) using the graphics library PLOTLIB." Fi-
nally, the dither file contains data used to display
low-resolution, black-and-white shaded images
on TMDS, or on RJET.

Pre-Processing

After we modified the PADL-2 sources for
the LTSS environment, they had to be pre-

processed from FLECS' to FORTRAN-66'7 and
then compiled. The FLECS pre-processor also had
to be modified to run on OCTOPUS. The FLECS
code had two VAX dependencies: (1) the 32-bit
word size of the VAX and (2) a few, non-standard,
VAX FORTRAN features (e.g., byte variable allo-
cation). Once we fixed these two dependencies,
and solved a problem with an unlabeled common
block, the FLECS pre-processor functioned well.

Compilation

After pre-processing, the PADL-2 source files
were compiled with either CIVIC or CFT (this
causcd difficulties later), and placed in BUILD!®
binary libraries. Because there were so many files,
a COSMOS controller managed the pre-
processing and compilation of the PADL-2
sources. Compilation uncovered a number of er-
rors in the code, including misdeclared variables,

(a)

(b)

Figure 4. Wireframe image of the PADL-2 part in Fig. 2(a) showing hidden lines, CRAY time = 11.5
and (b) with hidden lines removed, CRAY time = 26.6s.

4

mislabeled subroutines or functions, missing re-
turn statements in subroutines, and lines over 80
characters long.

Run-Time Debugging

After all the PADL-2 sources were compiled,
they were loaded using LDR' and a PADL-2
controllee was generated (size = 0.83M CRAY
words). Of course, PADL-2 did not work the first
time, so run-time debugging with the OCTOPUS
utility DDT® was the next step. Our basic ap-
proach was to run a VAX version of PADL-2, in-
stalled on the Non-Destructive Evaluation (NDE)
VAX at LLNL, in parallel with the CRAY-1 ver-
sion of PADL-2/1.0. We set breakpoints in impor-
tant areas of the code, and examined key variables
at each breakpoint. Different variable values for
the VAX and CRAY versions at the same break-
point indicated that something was amiss. Yet this
did not end the battle; the hard part was deter-
mining what caused the discrepancies between
two versions with identical source codes. Finally,
after some time, we identified three problems that
prevented successful execution of PADL-2 on the
CRAY-1.

The first problem was a binary incompatibil-
ity between CFT compiled code and CIVIC com-
piled code. Although it was not widely advertised,
CFT and CIVIC binary codes were not completely
compatible. This was because in CIVIC, logical
TRUE is represented with the integer one, while
FALSE is represented with the integer zero. In

CFT, logical TRUE is any value less than zero
(usually negative one), while FALSE is any value
greater than or equal to zero (usually zero). Thus,
if a routine compiled by CFT passed a logical
value to a routine compiled by CIVIC, or vice-
versa, problems would occur. This was indeed
happening in some parts of the CRAY-1 version
of PADL-2. Now, recall that some parts of
PADL-2 were compiled with CIVIC and others
with CFT. This was done because each compiler
has features that were more desirable to use on
certain parts of the PADL-2 code. However, be-
cause of the inconsistent logical values between
CFT and CIVIC, only one compiler could be used.
We chose the CIVIC compiler, and re-compiled all
CFT-compiled routines.

The second problem dealt with block data
directives. Unlike VAX FORTRAN, CIVIC will not
automatically load data declared below a block
data statement. To get around this difficulty, we
converted the block data segments into subrou-
tines and declared them as external in the PADL-2
main driver program.

The third and final problem was in the initial-
ization of an integer function. In VAX FORTRAN,
integer functions have a default value of zero if no
value is assigned to the function variable in the
function body. Unfortunately, this was not the
case in LRLTRAN. We identified one function in
the PADL-2 code that was not working properly
because of this problem. Once this problem was
corrected, Version 1.0 of PADL-2 was up and run-
ning on the CRAY-1.

Version 1.2

The experience we gained from bringing up
Version 1.0 helped expedite the installation of
Version 1.2 on the CRAY. This second version
was much cleaner than Version 1.0. For instance,
the University of Rochester eliminated all charac-
ter handling problems by placing character data in
FORTRAN-77 CHARACTER*1 arrays. Yet Ver-
sion 1.2 contained other interesting problems, pri-
marily those caused by the new FLECS pre-
processor shipped with the second version. This
particular FLECS pre-processor converted FLECS
code into FORTRAN-77. Because CIVIC was not
compatible with FORTRAN-77, we had to use the
CFT compiler to compile the pre-processed mod-
ules. However, the same three-step implementa-

tion process outlined for Version 1.0 was
employed.

Moving Version 1.2 Files to the CRAY

Moving the Version 1.2 sources from tape to
the CRAY proved to be slightly more difficult
than with Version 1.0. Rochester sent a VAX/VMS
backup format tape containing the PADL-2
sources, instead of a 24 x 80 blocked ASCII for-
mat tape. Thus, we had to reformat the tape for
the utility routines TAPECOPY? or RWFILES.
The files were read onto a VAX and rewritten to
replace their variable length records with 80-
column lines. Then the files were written back to

tape using the VAX COPY command and read
onto the CRAY. To expedite file modification for
LTSS, we wrote a pre-processing program to take
care of the INCLUDE and TAB problems de-
scribed earlier.

Static Debugging of Version 1.2

After the files were modified, the
FLECS/FORTRAN-77 pre-processor was installed
on the CRAY. The FLECS pre-processor was writ-
ten in FORTRAN-77, so it had to be compiled
with CFT. However, it was not clear just how
much of the standard FORTRAN-77?! was in the
CFT compiler because many CFT FORTRAN-77
features were not well documented. We discov-
ered that the newest CFT compiler had most of
the FORTRAN-77 features, with two exceptions:
(1) CHARACTER* variables could not be declared
with a length greater than 504 characters and (2)
integer and real variables could not be written to
character strings. The FLECS pre-processor took
advantage of these standard FORTRAN-77 fea-
tures, and we wrote routines in the CFT subset of
FORTRAN-77 to implement them. After doing
this, the FLECS pre-processor was easily brought
up on the CRAY.

Once the FLECS pre-processor was working,
pre-processing and compiling PADL-2 sources
with a COSMOS controllee could begin. We
found two problem areas in the Version 1.2 source
files: specifically, list-directed 1/0 and the
IMPLICIT NONE directive.

The CFT compiler could generate externals to
handle list-directed 1/0O and file I/O. Unfortu-
nately, no system library in LTSS could satisfy the
generated externals. Therefore, we created a pre-
processing program to translate FORTRAN-77
list-directed I/O statements into standard
FORTRAN-66 WRITE directives. Since file 1/0
was done in only a few PADL-2 routines, those
calls were manually replaced with equivalent
FORTLIB® calls.

While the CFT compiler technically conformed
to the FORTRAN-77 (and VAX FORTRAN) standard
with regard to I/O, this was not the case with the
IMPLICIT NONE directive. In the VAX FORTRAN,
IMPLICIT NONE essentially requires that all vari-
ables and functions be explicitly declared in a sub-
routine module. Yet in the CFT interpretation, sub-
routines must also be declared via the EXTERNAL
statement. To alleviate this problem, the list-directed
170 processor was modified to check for, and delete,
the IMPLICIT NONE statement in PADL-2/1.2
source files.

Once all the source files were compiled, we
loaded them using LDR, generating a controllee
0.85M CRAY words long. Surprisingly, the con-
trollee worked the first time and no run-time de-
bugging was necessary. This fortunate occurrence
was probably due to two factors: (1) the cleaner
version of PADL-2 that Rochester developed to
conform to the FORTRAN-77 standards, and
(2) identification of most potential pitfalls during
our implementation of Version 1.0.

Conclusions

To summarize, implementing Versions 1.0
and 1.2 of PADL-2 on the CRAY revealed the fol-
lowing facts:

® While PADL-2 is a landmark in solid
modeling research and development, it is poorly
documented. This prevented us from bringing it
up quickly on the CRAY-1.

® LRLTRAN is ill equipped to deal with
8-bit character data efficiently because it right
shifts the byte data passed between subroutines.

® Integer functions in LRLTRAN are not
automatically set to zero upon entry.

® There is a binary incompatibility between
CIVIC and CFT logical variables.

® Most FORTRAN-77 character handling
features are implemented in the new CFT com-
piler and the following intrinsic character han-
dling functions are available: INDEX, LEN,
CHAR, ICHAR, LGE, LGT, LLE, and LLT. How-
ever, CHARACTER* variables cannot have un-
limited length, and integer and real values cannot
be written to strings.

® The CFT compiler can generate externals
for list-directed I/0 and file I/O, but no LTSS sup-
port library exists that satisfies these externals.

e The IMPLICIT NONE statement in VAX
FORTRAN has a different effect than the
IMPLICIT NONE statement in CRAY FORTRAN.

e In order to write files from a VAX to tape
so they can subsequently be read by RWFILES or
TAPECOPY on OCTOPUS, observe the
following;:

a) Make sure the files do not have variable

length records.

b) Use the VAX COPY command to write

the files to tape.

¢) Once read off tape, the files must un-

dergo the following RWFILES conver-
sions: A8A6., CPLR.80, and A6CRAY.

® Data statements involving the < or the >
character in a cliche file cannot be handled cor-
rectly by PRECOMP. This is because the
< and the > characters have a special meaning in
PRECOMP syntax.

® The following bug has been fixed, and it is
described for documentation purposes only. Assume
module A (compiled with CFT) performs /0O us-
ing FORTRAN-77 CHARACTER* variables. Later,
if module B (compiled with CIVIC) is called and
tries to perform character 1/0, by trying to read
characters into an integer variable for instance, it
will not succeed. Instead, only one character will
be read into the integer word. A consultant dis-
covered that when FORTRAN-77 I/O was being
done, an internal variable in an I/O routine was
set to one, indicating that only one character could
be stored in an 8-bit word. Unfortunately, this
variable was not re-initialized when I/O in a
CIVIC procedure was initiated.

Acknowledgments

Special thanks to R. P. Yaffee, T. C. Michels,]J. R. Matthews, D. E. Sacket, T. G. Allison, R. Crowe,
D. L. Vickers, L. E. Taylor, M. D. Blair, M. K. Kong, and G. W. Laguna.

References

1. J.R. Kalibjian, Solid Modeling: Foundation for Manufacturing Automation, Lawrence Livermore Na-
tional Laboratory, Livermore, CA, UCRL-53651 (1985).
2.].R. Kalibjian, Solid Modeling Research at Lawrence Livermore: 1982-1985, Lawrence Livermore Na-
tional Laboratory, Livermore, CA, UCRL-53652 (1985).
3. Norio Okino, Yukinori Kakazu, and Hiroshi Kubo, “Theories for Graphics Processors in TIPS-1,”
Computers and Graphics 7, 3-4, pp. 243-258, 1983.
4. Christopher M. Brown, “PADL-2: A Technical Summary,” IEEE Computer Graphics and Applications,
2(2), pp- 69-84, March, 1982.
5. Digital Equipment Corporation, VAX-11 FORTRAN Referenice Manual, April 1982.
6. Cray Research Inc., CFT: The CRAY FORTRAN Compiler, Lawrence Livermore National Laboratory,
Livermore, CA, LCSD-304, February 13, 1981.
7. William S. Derby, John T. Engle, and Jeannie T. Martin, LRLTRAN Language Used with the CHAT and
CIVIC Compilers, Lawrence Livermore National Laboratory, Livermore, CA, LCSD-302, June 1, 1982,
8. Lawrence D. Sears, RWFILES User's Manual, Lawrence Livermore National Laboratory, Livermore,
CA, LCSD-1175.
9. Rich D. Bellas, LIB, Lawrence Livermore National Laboratory, Livermore, CA, LCSD-1548, October 2,
1981.
10. Rich Bellas and Neale Smith, XPORT Reference Manual, Lawrence Livermore National Laboratory,
Livermore, CA, LCSD-1196, December 1, 1981.
11. Jim Minton and Jeffrey C. Huskamp, TAPECOPY, Lawrence Livermore National Laboratory, Liver-
more, CA, UR-403, October 10, 1977.
12. Dennis Johnson, PRECOMP, Lawrence Livermore National Laboratory, Livermore, CA, LCSD-328,
September 28, 1979.
13. Gary Long, TRIXGL, Lawrence Livermore National Laboratory. Livermore, CA, LC5D-832, February
2, 1984.
14. Clement Luk and Bruce Kelly, COSMOS, Lawrence Livermore National Laboratory, Livermore, CA,
LCSD-508, May 16, 1984.
15. Mark Blair, Jim Kohn, Eric Mueller, and Lynd Stringer, PLOTLIB User’s Manual, Lawrence Livermore
National Laboratory, Livermore, CA, LCSD-439, April 1983.
16. Delshler Armstrong, FLECS/77 User's Manual, University of Rochester (1978), pp. 1-29.
17. American National Standards Institute, Programming Language FORTRAN ANSI X3.9-1966 (American
National Standards Institute, NY, 1966).
18. Larry Berdahl, BUILD, Lawrence Livermore National l.aboratory, Livermore, CA, LCSD-1512,
January 20, 1981,
19. Rick Johnson, LDR, Lawrence Livermore National Laboratory, Livermore, CA, LCSD-344, October
23, 1984.
20. Dave Seberger, DDT, Lawrence Livermore National Laboratory, Livermore, CA, LCSD-1620,
November 24, 1981.
21. American National Standards Institute, Programming Language FORTRAN ANSI X3.9-1978 (American
National Standards Institute, N, 1978).
22. Barbara Atkinson, FORTLIB—A Standard FORTRAN Library for the CDC 7600 and the CRAY-1, Law-
rence Livermore National Laboratory, Livermore, CA, LCSD-406, January 14, 1982.
PMB/mlc

